Context-Aware User and Item Representations Based on Unsupervised Context Extraction From Reviews

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Context-Aware User Preference Mining

In pervasive environments, users are situated in rich context and can interact with their surroundings through various services. To improve user experience in such environments, it is essential to find the services that satisfies user preferences in certain context. Thus the suitability of discovered services is highly dependent on how much the context-aware system can understand users’ current...

متن کامل

A Context-Aware User-Item Representation Learning for Item Recommendation

Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate ite...

متن کامل

CARS: Learning Context-aware Representations for Context-aware Recommendations

Rich contextual information is typically available in many recommendation domains allowing recommender systems to model the subtle effects of context on preferences. Most contextual models assume that the context shares the same latent space with the users and items. In this work we propose CARS, a novel approach for learning context-aware representations for context-aware recommendations. We s...

متن کامل

Context-Aware Representations for Knowledge Base Relation Extraction

We demonstrate that for sentence-level relation extraction it is beneficial to consider other relations in the sentential context while predicting the target relation. Our architecture uses an LSTM-based encoder to jointly learn representations for all relations in a single sentence. We combine the context representations with an attention mechanism to make the final prediction. We use the Wiki...

متن کامل

Context Aware Ontology based Information Extraction

We have developed an ontology based information extraction system where property and relation name occurrences are used to identify domain entities using patterns written in terms of dependency relations. Our key intuition is that, with respect to a given ontology, properties and relations are much easier to identify than entities, as the former generally occur in a limited number of terminolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2993063