Context-Aware User and Item Representations Based on Unsupervised Context Extraction From Reviews
نویسندگان
چکیده
منابع مشابه
Unsupervised Context-Aware User Preference Mining
In pervasive environments, users are situated in rich context and can interact with their surroundings through various services. To improve user experience in such environments, it is essential to find the services that satisfies user preferences in certain context. Thus the suitability of discovered services is highly dependent on how much the context-aware system can understand users’ current...
متن کاملA Context-Aware User-Item Representation Learning for Item Recommendation
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate ite...
متن کاملCARS: Learning Context-aware Representations for Context-aware Recommendations
Rich contextual information is typically available in many recommendation domains allowing recommender systems to model the subtle effects of context on preferences. Most contextual models assume that the context shares the same latent space with the users and items. In this work we propose CARS, a novel approach for learning context-aware representations for context-aware recommendations. We s...
متن کاملContext-Aware Representations for Knowledge Base Relation Extraction
We demonstrate that for sentence-level relation extraction it is beneficial to consider other relations in the sentential context while predicting the target relation. Our architecture uses an LSTM-based encoder to jointly learn representations for all relations in a single sentence. We combine the context representations with an attention mechanism to make the final prediction. We use the Wiki...
متن کاملContext Aware Ontology based Information Extraction
We have developed an ontology based information extraction system where property and relation name occurrences are used to identify domain entities using patterns written in terms of dependency relations. Our key intuition is that, with respect to a given ontology, properties and relations are much easier to identify than entities, as the former generally occur in a limited number of terminolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2993063